

YANMAR ENERGY SYSTEMS

Products Overview

YANMAR America Corporation
Michael Alfano
Regional Sales and Service Manager
michael-alfano@Yanmar.com

Introduction of YANMAR

YANMAR America Division

YANMAR America

Regional Headquarters: Adairsville, GA, USA

Incorporated: 1981 President: Tim Fernandez

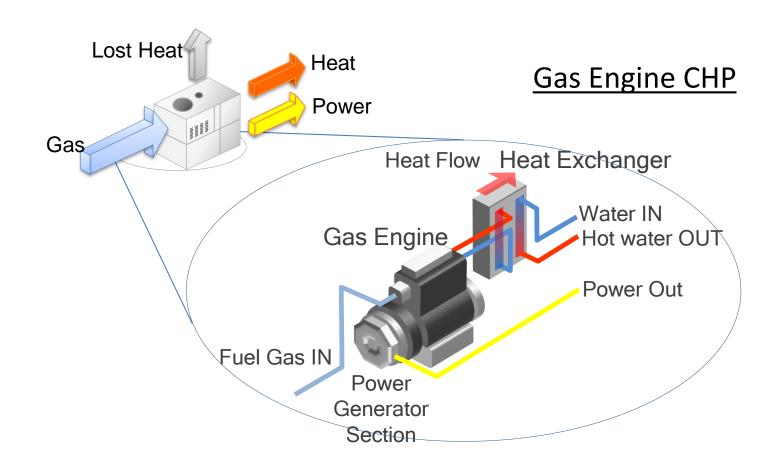
Employees: 240

Production (JPN)

YANMAR Energy System Manufacturing Co., Ltd, Okayama, JPN

YANMAR America and Training centre (EVO//CENTRE)

YANMAR America, Adairsville, GA, USA YANMAR Training Centre (EVO//CENTRE), Acworth, GA, USA



YANMAR Micro-CHP

What is CHP?

- > CHP is an abbreviation for Combined Heat and Power.
- > CHP is also known as "Cogeneration," which is the production of both **heat** and **electricity**.

Main Features of YANMAR micro CHP

Gas Engine Reliability

YANMAR's gas engine has been used for more than 25 years with more than 300,000 installed units (6,000 mCHP units)

Efficient Engine and Electric Generation

Electric Generation Efficiency:

35kW = 32.0%

> Durability

Long Maintenance Interval

35 kW = 7,500 hours

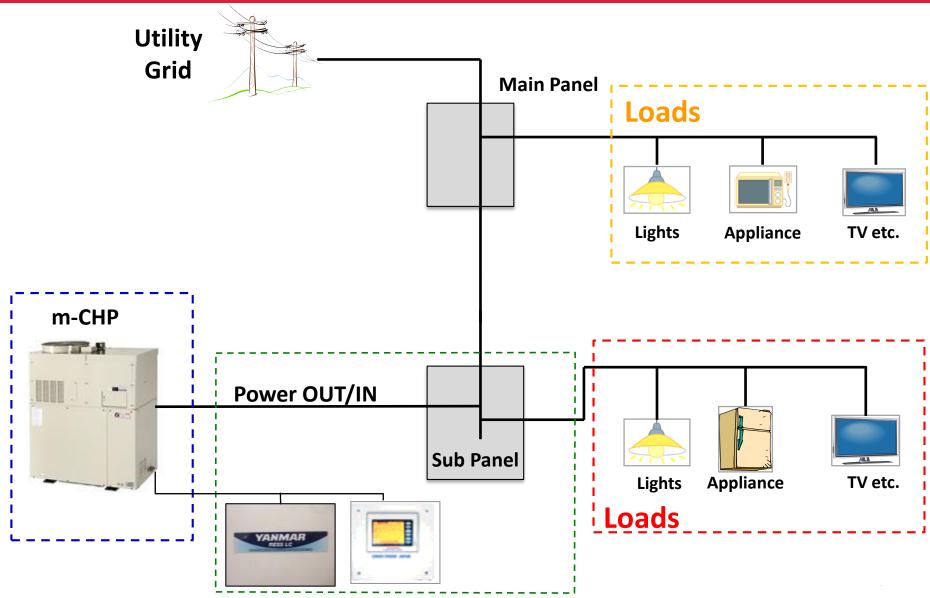
Low Operating Sound

35 kW = 62 dB(A) at 3 feet (when the radiator fan stops)

> Easy Customization

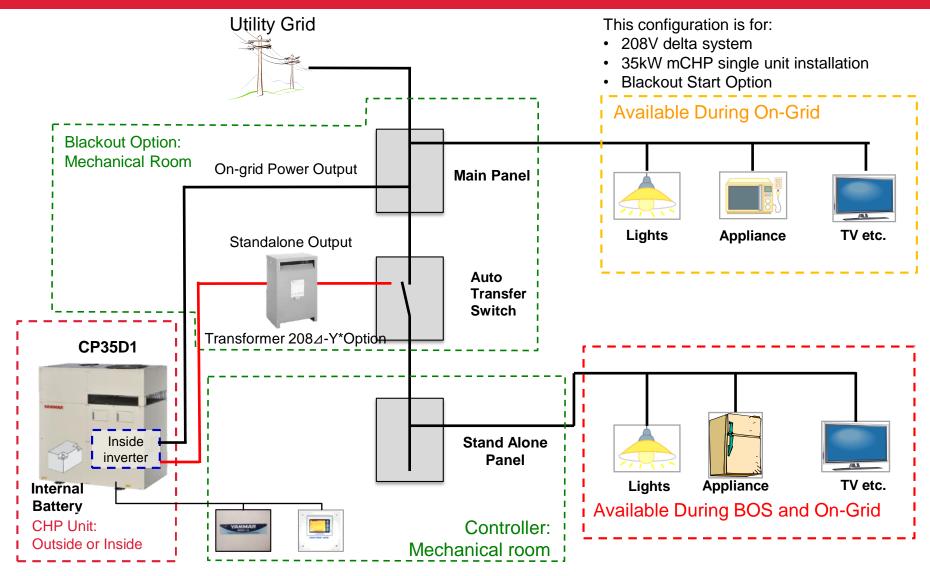
Multiple unit operation (up to 16 units), Blackout Start, etc.

- Remote Monitoring System (optional)
- > Built-in Radiator
- Built-in Inverter

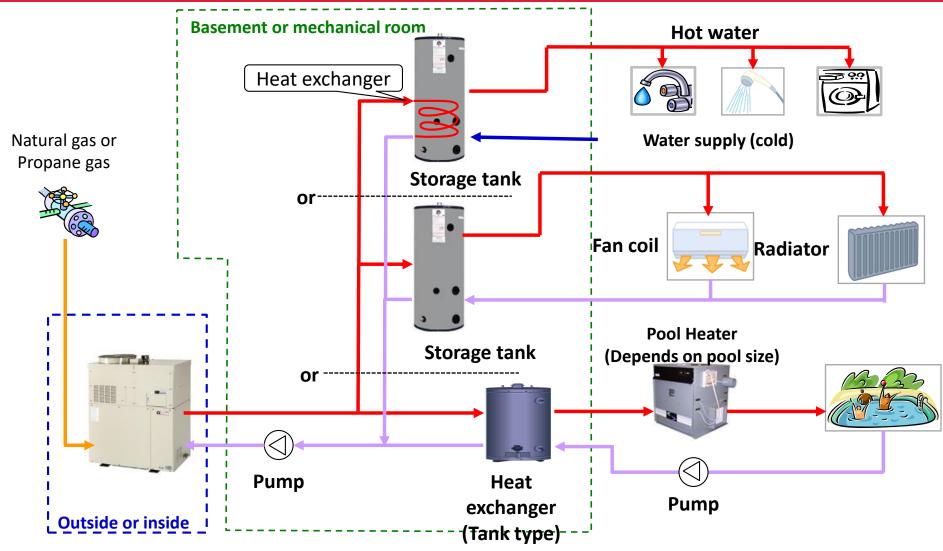

Main Spec

No	Item			Unit		
1	Model				CP35D1(Z)-TNU(W)	
2	Power output	Power output *1		kW	35kW, 35kVA	
		Voltage		V	208 Delta	
		Phase and Wire			3 Phase, 3 wire	
3	Heat output	Recovered heat		kBtu/kW	204.1 / 59.8	
		Rated temp		F/C	Inlet: 167/75, outlet:176/80	
		Rated hot water flow		gal/min (L/min)	43.3 (164.0)	
4	Fuel gas	Туре			Natural gas	
		Pressure	Standard	in.WC (kPa)	8.03 (2.0)	
			Working rage	in.WC (kPa)	8.0 to 10.0 (2.0 to 2.5)	
		Consumption (LHV base)		kBtu (kW)	367.5 (107.7)	
5	Input power supply	Voltage		V	208	
		Rated power	power Radiator Fan Stop kW 0.75		0.75	
		consumption Radiator Fan ON		kW	1.00	
	Gross efficiency	Overall efficiency		%	87.0	
5		Generating efficiency		%	32.0	
		Engine efficiency		%	55.0	
6	Package	Size		Inch(mm)	W:78.7(2000), D:31.5(800), H:78.5(1995)	
		Weight		Lbs/kg	3106 (1410), 3197(1450):BOS	
7	Operation noise	Radiator Fan stop		dB(A)	62	
,		Radiator Fan operation		dB(A)	64	
8	Generator	Number of phase / wire		-	3 phase 4 wire	
		Insulation class of armature coil		-	F type	
		Bearing type		-	No bearing	
10	Maintenance	Interval		hr	7,500	

^{*1} Test Conditions: Temperature 59°F, Humidity 30%, Altitude 0m fuel gas maximum heat value in EPA regulation.



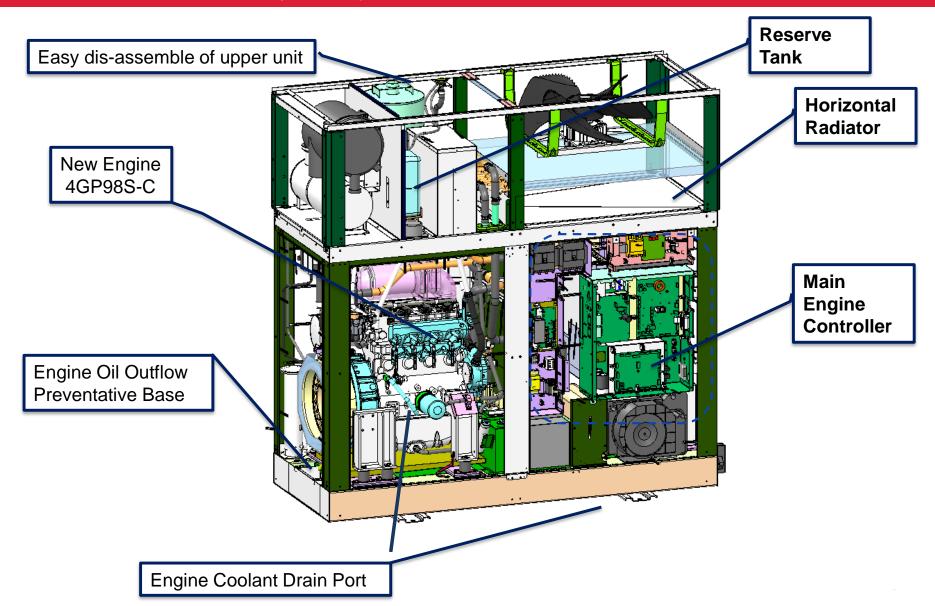
Electrical Configuration (Grid-Tied)



External System Configuration (Electric – BOS Option 35kW)

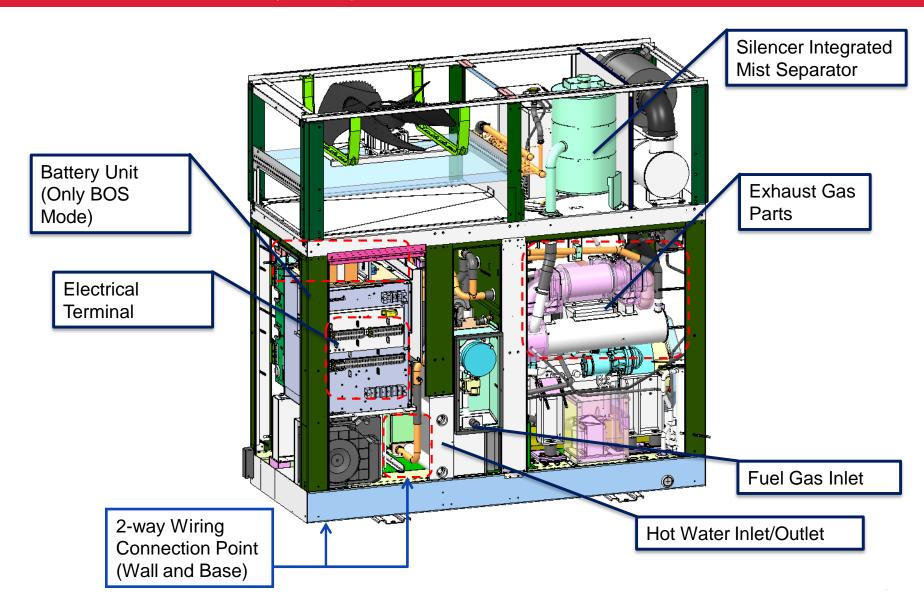
System Configuration (Hot water)

Structure


Notes: YANMAR CP35D1 certified as

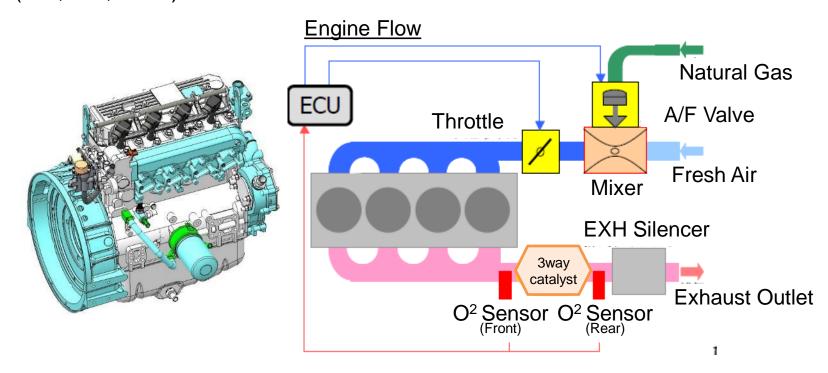
CSA C22.2 No.100 Motors and Generators

CSA C22.2 No.14 Industrial Control Equipment



Main Structure (Front)

Main Structure (Rear)

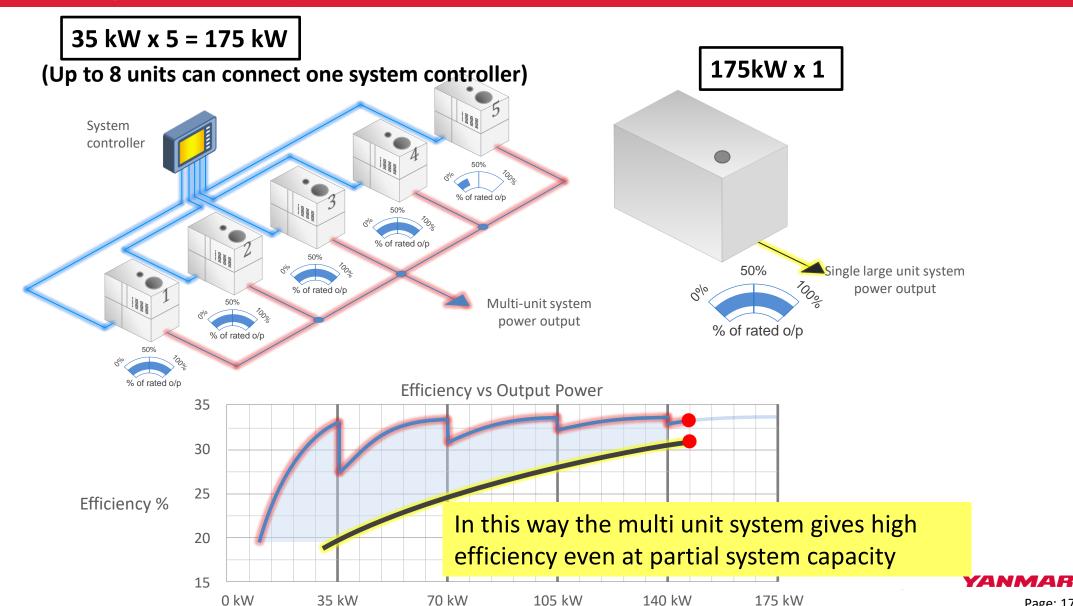

Engine

Stoichiometric Combustion Engine

If there is exactly enough fresh air provided to completely burn all of the natural gas, the ratio is known as a stoichiometric mixture.

3-way Catalyst

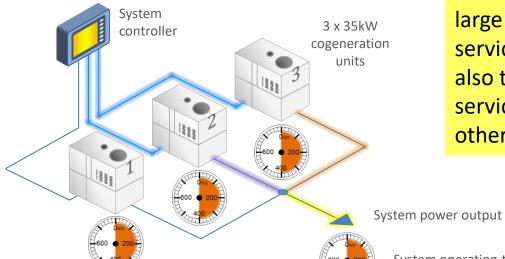
A 3-way Catalyst is designed to simultaneously convert three pollutants (CO, HC, NOX) into harmless emissions.



Multiple installation

Higher Efficiency at Partial Loads

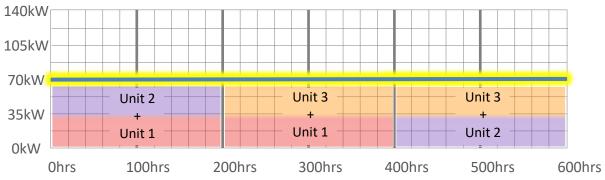
Page: 17


Rotation Operation

Each unit run-time (hours)

Max run-time difference

allowed between units (hours)


System operating time: at end of 400-600 hour period Load = 70kW (unit 1 + 3)

In this way the multi unit system acts like a large unit for servicing so the units can be serviced during the same visit to the site — also the system can carry on operating during servicing each unit in turn and using the other units

System operating-time (hours)

System power 7
Output (kW)

Elapsed time (hours)

Yanmar's CHP units are designed to target Residential & C&I sector.

CHP Use Cases in North America

Residential

Luxury Home, NY 10kW, 2013

Luxury Home, CT

Residential Building, CT 10kW, 2015

Green Metals, Canada 35kW 2016

Chatham University, PN 2 X 10kW, 2016

Trans-Alaska Office Building, AK 35kW, 2016

Kwaan Health Clinic, Al 10kW, 2014

Hyatt Place Hotel, ME 10kW, 2014

Ridge Road Community Center, AK 5kW, 2014

Multiple Unit Installation

Installation Example – Multi-Unit Rooftop for Airline Catering Facility

Installation Example Rooftop Bronx NY Mullti-family

Installation Example Multi-Unit – Home to Suites Hotel, Portland ME

Installation Example Famous Dave's Restaurant ,Scarborough, Maine

Maintenance

Maintenance Intervals

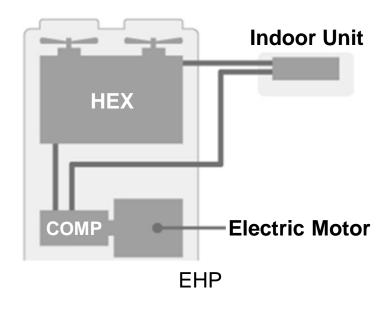
- > 35D1's maintenance interval is every 7,500 hours
- > YANMAR provides optional 60,000 hour maintenance packages

		Regular Service	Regular Service	Regular Service	Overhaul	
Ite	ms	7,500 hrs	12,500 hrs	25,000 hrs	30,000 hrs	
		or 5 years	or 5 years	or 5 years	or 10 years	
	Lube Oil	Replace	Replace	Replace	Replace	
	Oil Filter	Replace	Replace	Replace	Replace	
	Air Element	Check	Replace	Check	Replace	
	Coolant	Replace	Replace	Replace	Replace	
	Spark Plug	Check	Replace	Check	Replace	
Engine	Valves	Check, Adjustment	Check, Adjustment	Check, Adjustment	Check, Adjustment	
	Exhaust Neutralizer	Check, Additional	Check, Additional	Check, Additional	Check, Additional	
	Oxygen Sensor	Replace	Replace	Replace	Replace	
	Rubber Hoses	Check	Check	Check	Replace	
	Body	Check	Check	Check	Check	
Generator	Body, etc.	Check	Check	Check	Check	
	Rubber Hoses	Check	Check	Check	Replace	
	Vibration Isolator	Check	Check	Check	Replace	
CHP Package	Pump, Fan Motor	Check	Check	Check	Replace	
CHF Fackage	Noise, Vibration	Check	Check	Check	Check	
	Bolts, Terminal Loose	Check	Check	Check	Check	
Inve	erter	Check	Check	Check	Replace FAN	
Bat	tery	Every 4 years or every 20,000 hours				

YANMAR GHP

What is GHP

Gas **H**eat **P**ump (Gas engine driven Heat Pump)

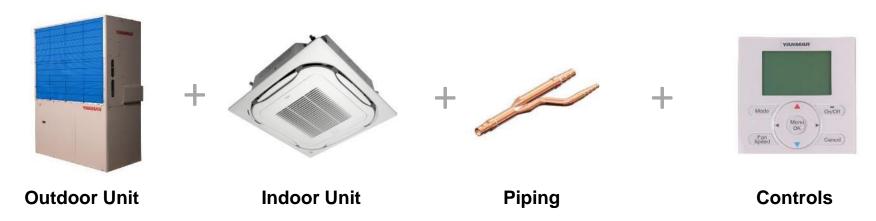

YANMAR GHP

- Driven by a small gas engine
- Multi-split system
- Can connect multiple units

Heat Recovery Gas Engine GHP

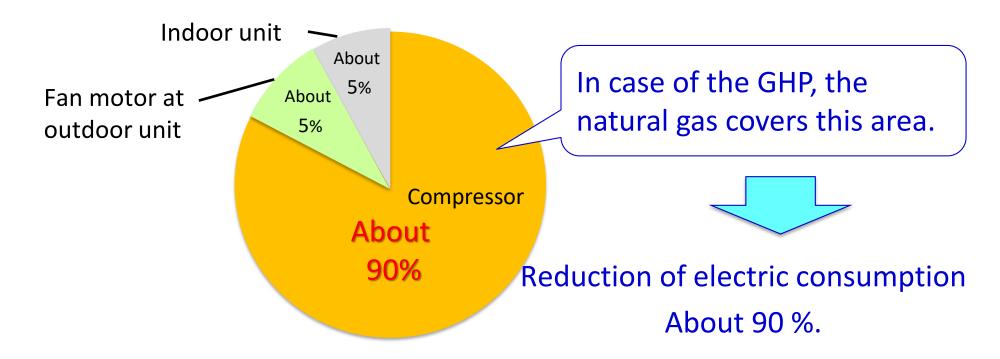
Traditional Electric (EHP)

- Driven by an electric motor
- Can connect multiple units



What is GHP

YANMAR GHP Variable Refrigerant Flow (VRF) is a modular, commercially applied air conditioning and heating system that distributes refrigerant from the outdoor unit to multiple indoor units providing efficiency, comfortable individual user control and reliability in one flexible package.


YANMAR's GHP VRF System is built on 4 basic product elements:

Reduce up to 90% of electricity use

- > The GHP system can reduce the electric consumption about 90%
 - ☐ The ratio of energy consumption at heat pump system

What is GHP

Main Features VRF Technology:

YANMAR's Gas Engine Reliability

YANMAR's gas engine has been used for more than 24 years with more than 300,000 installed units

Low Power Consumption

14 RT = 0.86 kW (Cooling)

Durability

Long maintenance interval of 10,000 hours

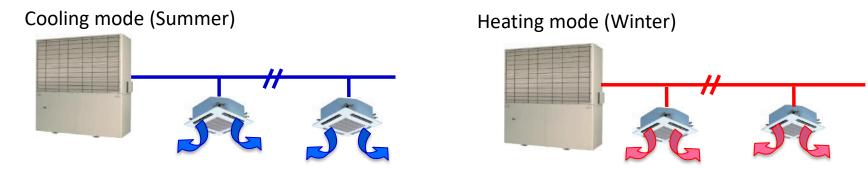
Compressor Warranty: 7 years or 28,000 hours

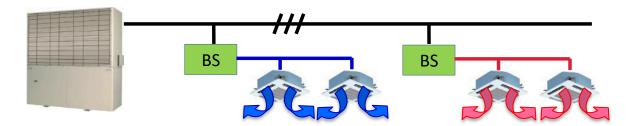
VRF (Variable Refrigerant Flow) Air Conditioning System

Heat pump and heat recovery (3 pipe) offer high energy savings and comfortable heating and/or cooling.

Low Operating Sound

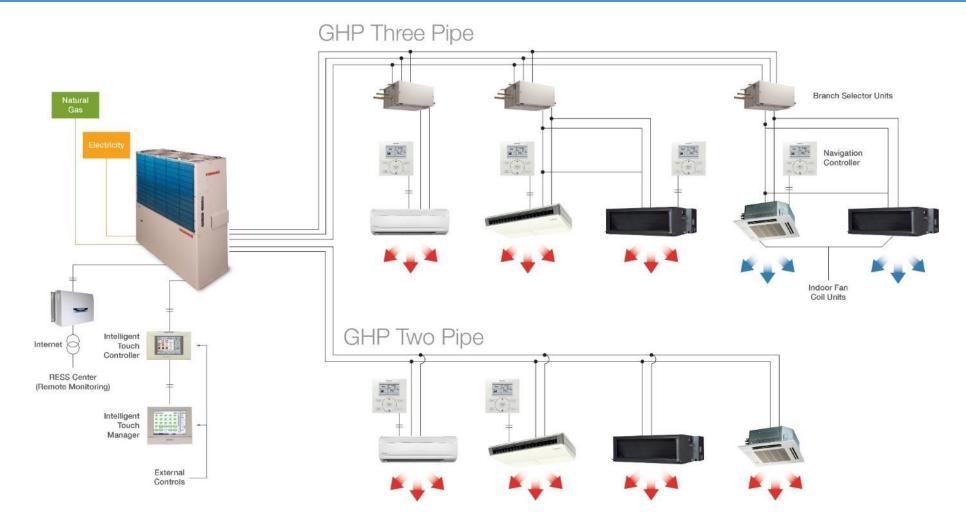
14 RT = 58dB(A) at 3 feet (when the radiator fan stops)


- Faster Heating Using Heat Recovery
- Remote Monitoring System
- Anti-salt Paint is a Standard Option


2 pipe and 3 pipe (heat recovery system)

• The GHP has reverse cycle. Cooling or Heating are available with one GHP system.

≥ 2 pipe system (Standard)

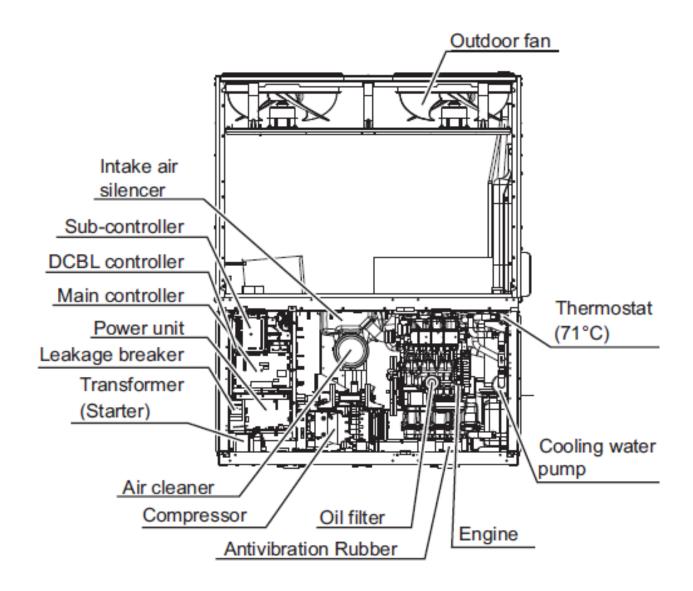


➤ 3 pipe system (Heat Recovery)

Basic Layout

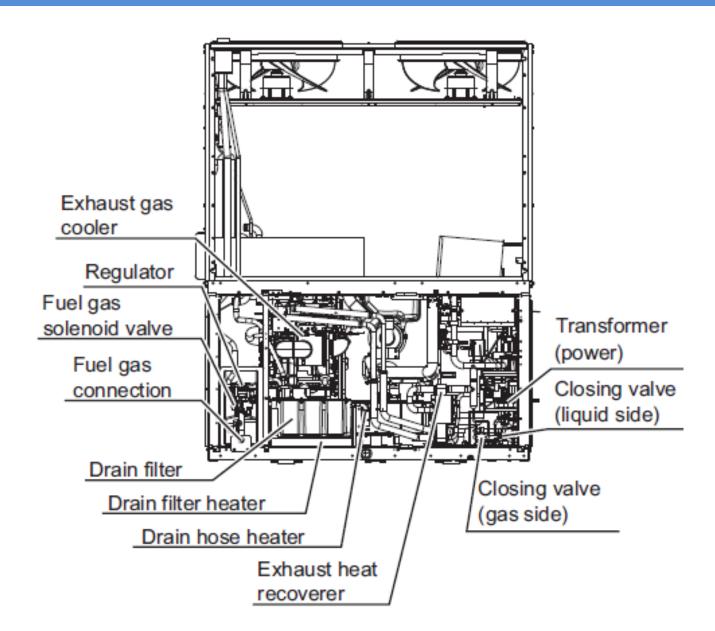
Main Spec

Model Number	NNCP096	NNCP120	NNCP14 4	NNCP168	NFZP168	
Cooling capacity RT (kW)	8 (28.1) 10 (35.2) 12 (42.2)			14 (49.2)		
Heating capacity Btu (kW)	106,000 (31.6)	134,000 (39.6)	156,000 (46.9)	189,000 (58.0)		
Number of Pipes	mber of Pipes 2				3	
Height inch (mm)	85 7/16 (2170)					
Width inch (mm)	66 9/16 (1690)					
Depth inch (mm)	31 1/2 (800)					
Weight lbs (kg)	1896 (960)		1940 (880)	1962 (890)		
Refrigerant Pipe Size (Liquid, Gas)	3/8, 7/8	1/2,1	1/2, 1-1/8	5/8, 1- 1/8	5/8, 1-1/8, 7/8 (Discharge)	
Number of Connectable IDU	2 to 16	2 to 20	3 to 24	3 to 29	3 to 29	
Total capacity of CIU * [%]	80 to 130 70 to 130			60 to 130		
Refrigerant type	R410A					

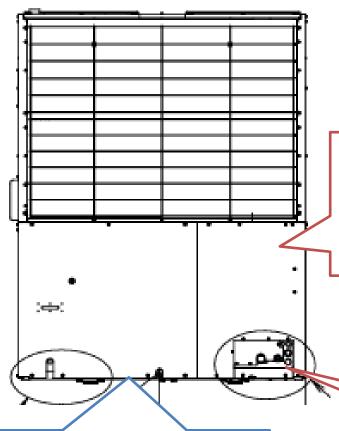


Page: 34

Structure



Main Structure (Front)



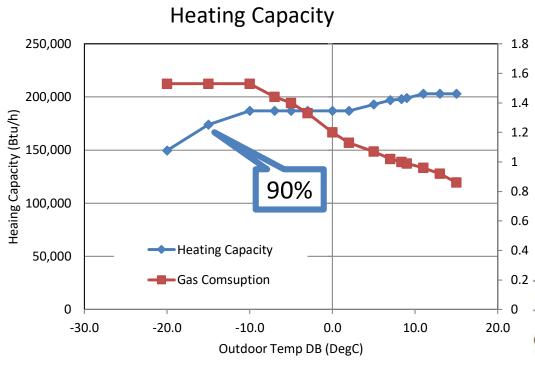
Main Structure (Rear)

Connection

Electricity

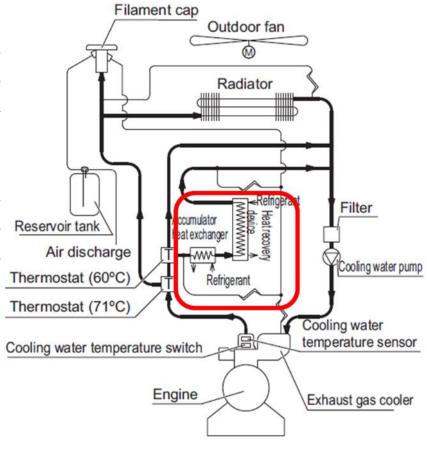
- 208V /230V /240V
- Single phase

Natural Gas Connection


- 3/4"
- Pressure 4 to 10 inches of Water

Refrigerant

- Gas 1-1/8", Liquid 5/8"
- R410A
- Design Pressure 430 psi
- Air tightness test 550 psi



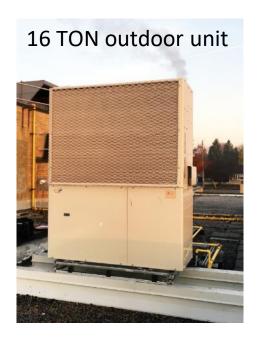
Winter Performance – cold ambient temperature -

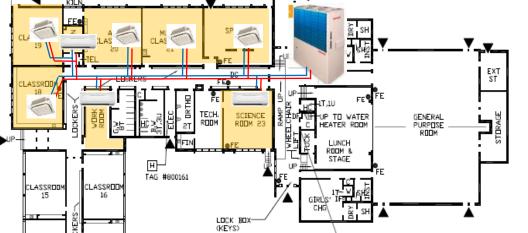
If outdoor temp going down, use more gas but heating capacity doesn't drop so much

Cooling water diagram

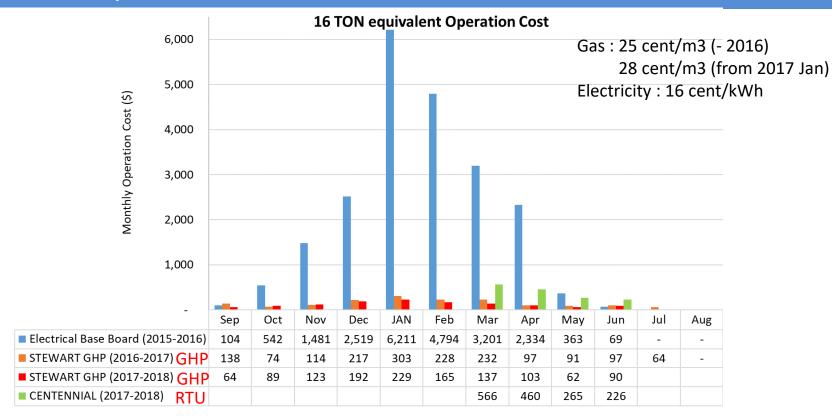
During heating mode, Recover engine heat to refrigerant

=




Case Studies

Stewart Avenue public School, Cambridge Ontario



Heating and air conditioning for classroom

Operation cost comparison

[Gas Consumption for GHP]

	Sep	Oct	Nov	Dec	JAN	Feb	Mar	Apr	May	Jun	Jul	Aug
2016-2017	423	228	386	799	1033	733	739	258	234	259	138	0
2017-2018	142	229	351	594	727	509	399	281	135	232		

Chesapeake Utilities New HDQ Building – Dover Delaware

Life-Cycle Cost Analysis

HVAC Life-Cycle Cost Analysis (20 years)

Three Systems compared:

- 1. Packaged gas-fired heating/DX cooling RTUs
- 2. Condensing boilers and air-cooled chillers, 4-pipe; chilled beams; ERVs.
- 3. Yanmar VRF gas-fired heat pumps, 3-pipe; ERVs.

And the Winner is....

Yanmar VRF Gas-Fired Heat Pumps

WHY?

- First Costs 2nd place. 21% more than RTUs, BUT 18% lower than boiler / chiller / chilled beams option.
- Energy Costs Lowest.
 Over \$21,000/year savings over the other options.*
- <u>Maintenance Costs Lowest.</u> (tied with RTUs).

*Energy savings driven by a significant reduction in electric demand charges.

Chesapeake Utilities HDQ Building

14 TON outdoor unit

Indoor Equipment

Electric Savings from Choice of Rate Schedule and Demand Charges

Large Commercial (Secondary)									
Cust charge (3-phase):	\$	22.50	mo						
Demand:	\$	13.90	kW						
Energy Charge:	\$	0.0677	kWh						
PPA:	\$	-	kWh						
GEF Rider:	\$0	.000178	kWh						

Minimum Demand = 60% of the Peak Month Demand

- With <u>Gas Heat Pumps</u>, the modeled Demand charge was 46% of the total electric bill.
- By contrast, with conventional RTUs, our building's Demand charges would have been 66% of the total electric bill.
- With RTUs, the total electric bill was estimated to be <u>2.3 times higher!</u>
- Electricity costs 3X more than natural gas on an equivalent BTU basis

Thank You

